Fabrication and characterization of nanopores with insulated transverse nanoelectrodes for DNA sensing in salt solution.

نویسندگان

  • Ken Healy
  • Vishva Ray
  • Lauren J Willis
  • Neil Peterman
  • John Bartel
  • Marija Drndić
چکیده

We report on the fabrication, simulation, and characterization of insulated nanoelectrodes aligned with nanopores in low-capacitance silicon nitride membrane chips. We are exploring these devices for the transverse sensing of DNA molecules as they are electrophoretically driven through the nanopore in a linear fashion. While we are currently working with relatively large nanopores (6-12 nm in diameter) to demonstrate the transverse detection of DNA, our ultimate goal is to reduce the size sufficiently to resolve individual nucleotide bases, thus sequencing DNA as it passes through the pore. We present simulations and experiments that study the impact of insulating these electrodes, which is important to localize the sensing region. We test whether the presence of nanoelectrodes or insulation affects the stability of the ionic current flowing through the nanopore, or the characteristics of DNA translocation. Finally, we summarize the common device failures and challenges encountered during fabrication and experiments, explore the causes of these failures, and make suggestions on how to overcome them in the future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Tunneling Electrodes for Nanopore-based DNA Sequencing

The advent of DNA sequencing has revolutionized fundamental research and brought incredible hope for personalized medicine. However, the race still continues for cheaper and faster techniques that can surpass conventional methods and ultimately reach the $1000 genome goal. This thesis describes the fabrication and first characterizations of nanopores-based devices with embedded tunneling electr...

متن کامل

Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing

We show low-cost fabrication and characterization of borosilicate glass nanopores for single molecule sensing. Nanopores with diameters of ~100 nm were fabricated in borosilicate glass capillaries using laser assisted glass puller. We further achieve controlled reduction and nanometer-size control in pore diameter by sculpting them under constant electron beam exposure. We successfully fabricat...

متن کامل

A nanofluidic channel with embedded transverse nanoelectrodes.

In this paper, we demonstrate fabrication and characterization of a nanofluidic channel with embedded transverse nanoelectrodes using a combination of conventional photolithography and focused ion beam technologies. Glass-capped silicon dioxide nanochannels having 20 nm depth, 50 nm width, and 2 microm length with embedded platinum nanoelectrodes were fabricated. Channel patency was verified th...

متن کامل

Abstract Submitted for the MAR10 Meeting of The American Physical Society An integrated nanopore-nanochannel system for biodetection: longitudinally-displaced transverse nanoelectrodes along a nanochannel1

Submitted for the MAR10 Meeting of The American Physical Society An integrated nanopore-nanochannel system for biodetection: longitudinally-displaced transverse nanoelectrodes along a nanochannel1 XINSHENG SEAN LING, Brown University — In this talk, I’ll describe a novel device concept for a biodetection system with combined characteristics of nanopores and nanochannels. Solid-state nanopores d...

متن کامل

Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm.

We report on the fabrication and characterization of gold nanoelectrodes with carefully controlled nanometer dimensions in a matrix of insulating silicon nitride. A focused electron beam was employed to drill nanopores in a thin silicon nitride membrane. The size and shape of the nanopores were studied with high-resolution transmission electron microscopy and electron-energy-loss two-dimensiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electrophoresis

دوره 33 23  شماره 

صفحات  -

تاریخ انتشار 2012